Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Partial Marks
7(a)	$x+2\left(x+\frac{1}{4}\right)=8$ oe	M2	M1 for $2\left(x+\frac{1}{4}\right)$ oe seen
	2.5	B1	
7(b)(i)	$x^{3}=2 x(x-2)(x-2)$ oe	M1	
	$\begin{aligned} & {\left[(x-2)^{2}=\right] x^{2}-2 x-2 x+4} \\ & \text { or } 2 x^{3}-4 x^{2}-4 x^{2}+8 x \end{aligned}$	B1	$\begin{aligned} & \text { Allow }-4 x \text { for }-2 x-2 x \\ & \text { Allow }-8 x^{2} \text { for }-4 x^{2}-4 x^{2} \end{aligned}$
	leading to $x^{3}-8 x^{2}+8 x=0$	A1	Final equation reached without any errors or omissions
7(b)(ii)	Correct sketch	2	B1 for correct shaped cubic with max before min
7(b)(iii)	318 or 319 or 318.3 to 318.7	2	B1 for 6.83 or $6.828 \ldots$ seen isw use of other values (1.1715 ...)
8(a)(i)	$\frac{2}{6} \mathrm{oe}$	1	
8(a)(ii)	$\frac{4}{6} \text { oe }$	1	
8(a)(iii)	$\frac{4}{6} \text { oe }$	1	
8(b)(i)	$\frac{1}{36} \text { oe }$	2	$\text { M1 for } \frac{1}{6} \times \frac{1}{6}$
8(b)(ii)	$\frac{4}{36} \text { oe }$	3	M2 for $\frac{1}{6} \times \frac{2}{6}+\frac{2}{6} \times \frac{1}{6} \quad$ oe or M1 for one product soi by $\frac{1}{18}$ oe
8(c)	$\frac{215}{216} \text { oe }$	2	M1 for $1-\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}$ oe

Question	Answer	Marks	Partial Marks
9(a)(i)	$[y=] 5 x-3$	3	M1 for gradient $=\frac{12-2}{3-1}$ oe M1 for substituting $(1,2)$ or $(3,12)$ into $y=m x+c$ OR M2 for $\frac{y-2}{x-1}=\frac{12-2}{3-1}$ oe
9(a)(ii)	$y=-\frac{1}{5} x+2 \mathrm{oe}$	2	FT their gradient in (i) M1 for answer in form $y=m x+2$ oe or for $y=\frac{-1}{\text { their } 5} x+c$ oe
9(b)(i)	$-2, \frac{2}{3}$ oe with correct working	3	B2 for sketch with one -ve and one +ve zero or B1 for sketch of parabola vertex downwards OR B2 for $(3 x-2)(x+2)$ or B1 for $3 x(x+2)-2(x+2)$ or $x(3 x-2)+2(3 x-2)$ or for $(3 x+a)(x+b)$ where $a b=-4$ $\text { or } a+3 b=4$ OR B2 for $\frac{-4 \pm \sqrt{4^{2}-4(3)(-4)}}{2(3)}$ oe or $\mathbf{B 1}$ for $\sqrt{4^{2}-4(3)(-4)}$ or $\frac{-4 \pm \sqrt{\ldots \ldots . .}}{2(3)}$ If 0 or B1 scored, then $+\mathbf{B 1}$ for $-2, \frac{2}{3}$
9(b)(ii)	$-2<x<\frac{2}{3}$	2	FT their (b)(i) B1 for $-2<x$ or for $x<\frac{2}{3}$ seen If 0 scored SC1 FT for $-2 \leqslant x \leqslant \frac{2}{3}$
9(c)	$[a=]-4,[b=] 8,[c=] 1$	3	M2 for $y=a(x-1)^{2}+5$ or M1 for use of $y=a(x-h)^{2}+k$ or for $c=1$ or $-\frac{b}{2 a}=1$
10(a)(i)	125	1	
10(a)(ii)	305	2	FT their (i), Dep on (i) < 180 M1 for $180+\operatorname{their}(\mathrm{i})$, Dep on (i) <180

Question	Answer	Marks	Partial Marks
10(b)	69.3 or 69.32 to 69.33	3	M1 for $90^{2}+120^{2}-2 \times 90 \times 120 \cos 35$ A1 for 4806...
10(c)	60.3 or 60.28 to 60.29	3	M2 for $\frac{115 \sin 65}{120}$ oe or $\mathbf{M 1}$ for $\frac{115}{\sin B A C}=\frac{120}{\sin 65}$ oe
10(d)(i)	8730 or 8728 to $8730 \ldots$	4	$\begin{aligned} & \text { M1 for } 0.5 \times 90 \times 120 \times \sin 35 \\ & \text { M2 for } 0.5 \times 120 \times 115 \times \sin (180-65 \\ & \text { or M1 for } \quad-\text { their }(\mathrm{c})) \text { oe } \\ & \text { angle } A C B=180-65-\text { their }(\mathrm{c}) \end{aligned}$
10(d)(ii)	349 or 349.1 to $349.2 \ldots$	3	FT their (d)(i) $\div 25$ M2 for their (i) $\div 25$ oe or M1 for squaring scale oe or for figs 349 or 3491 to 3492
11(a)(i)	10	1	
11(a)(ii)	1	1	
11(b)	$\frac{x-1}{2}$ oe	2	M1 for $y-1=2 x$ or $x=2 y+1$ or $\frac{y}{2}=x+\frac{1}{2}$
11(c)	$4 x^{2}+4 x+2$ final answer	3	M1 for $(2 x+1)^{2}+1$ B1 for $\left[(2 x+1)^{2}=\right] 4 x^{2}+2 x+2 x+1$ oe
11(d)	Translation $\binom{0}{-2}$	2	B1 for each
11(e)	3	1	

